

Congestion, Economic Performance, and Autonomous Vehicles

**C. Winston
Brookings**

**Q. Karpilow
Yale**

Outline

- Basic data about the US transportation system
- Analyzing the system in the context of an economy
- The effects of congestion on performance
- Ameliorating congestion with autonomous vehicles

Basic Data on Transport System and US Economy

- Total pecuniary spending by firms and consumers \$2.1 trillion
- Government spending on infrastructure \$0.26 trillion
- Transportation's share of GDP (17%) is similar to healthcare's share
- Expenditures in time (freight and travelers) \$3 trillion

Value of the Capital Stock

- Highways \$2.8 trillion
- Rail network \$0.34 trillion
- Pipelines \$0.17 trillion
- Public airways, waterways, and transit structures \$0.57 trillion
- Challenge is to efficiently use the capital stock

Transportation's Effects On Other Sectors

- **Labor Markets**—job matching, employment, and wages
- **International & Domestic Trade Flows**—trade costs, product variety
- **Industry Competition and Efficiency**—scale and scope economies
- **Agglomeration Economies in Metropolitan areas**—exchange ideas and information
- **Transport Inefficiencies Generate Huge Costs Because Entire Economy is Affected**

Congestion

- Congestion adversely affects travelers and non-transport sectors of the economy—evidence on the former but little evidence on the latter
- We explore how congestion affects the California economy accounting for the growth in employment, GDP, wages, and freight flows
- Policy mindset is to increase infrastructure spending to reduce congestion costs
- Autonomous cars remind us that modes lead infrastructure not the other way around

Measuring the Effect of Congestion

- Fundamental challenge is that unobserved influences that affect congestion will also affect any measure of economic performance
- Determining a causal relationship between congestion and economic performance requires a valid instrument for congestion
- Our analysis is confined to California counties with measurable congestion
- California has self-help counties that starting in the 1980s could pass legislation to pay for road improvements to relieve congestion

Self-Help (SH) County Taxes as a Valid Instrument for Congestion

- Measure is the cumulative share of highway spending generated by SH taxes
- CUMULATIVE = Σ tax rate • share of SH revenue allocated to highway projects

First stage results:

Log Annual hours of delay per commuter =

0.25 CUMULATIVE* -0.017 CUMULATIVE SQUARED* + Population and urban area and year fixed effects

R-Square = 0.91 *p <0.05 N=256 county years

Are SH County Taxes Exogenous?

- Note we include only CA counties that enacted a SH tax. Tax rate was nearly always 0.5%, so it is independent of a county's economic performance
- Year in which a SH tax was enacted and share of tax revenue allocated to highways are exogenous
 - Many SH taxes failed on first try, indicating importance of political mobilization
 - Threshold for approval was raised by CA Supreme Court from 50% to 67%
 - Spending plans (earmarks) cater to a variety of interests and sub-regions within a county

Specification for GDP, Employment & Wages

Basic Model (suppressing time/county subscripts)

$$\text{Log}(G) = \beta * \log(C) + X\delta + \varepsilon,$$

where G is the growth rate of a performance variable, employment, GDP, or wages, β is the causal effect of congestion level C on the growth rate; $X\delta$ is an array of controls and coefficients, and ε is the random error term

Sample: 256 county years for CA counties with observed congestion that previously voted for a SH tax and eventually enacted one by 2011.

Specification for Freight Flows

- We obtained data for freight flows between CA counties ($N=100$) for the years 2007 and 2010 and constructed a three year trade flow growth rate between urban area i and urban area j , FG_{ij}
- Our model: $\ln FG_{ij} = \beta_0 + \beta_1 \ln(congestion_i) + \beta_2 \ln(congestion_j) + \beta_3 population_i + \beta_4 population_j + \varepsilon_{ij}$
- Congestion at the origin and destination is instrumented by CUMULATIVE at the origin and destination

Estimation Results for β : Effect of Congestion on the Economy

	OLS	2SLS	2SLS	R ²
Job Growth	-0.011*	-0.025*		0.72
GDP Growth	-0.008	-0.026*		0.72
Wage Growth	-0.01	-0.018***		0.63

*p<0.01 ***p<0.1

Estimation Results for Freight Flows

Delay at the Origin	OLS	2SLS
Urban Area	-0.099*	-0.318*

Delay at the Destination	OLS	2SLS
Urban Area	-0.005	-0.118

*p<0.01

Annual freight flow growth rate elasticity with respect to origin congestion= -0.106

Annual freight flow growth rate elasticity with respect to destination congestion= -0.039

Ameliorating Congestion: Stimulating Economic Growth

- Increase government spending: raise gas tax, infrastructure bank, repatriation of foreign profits
- Institutional reform: efficient road pricing, investment, and allocation of funds; implement latest technologies
- Quasi-experiments: public-private partnerships; outright privatization
- Technological change and innovation: autonomous vehicles

Modes Lead Infrastructure

- **Transportation modes have improved their performance and safety regardless of the state of their infrastructure**
- **Autonomous Vehicles: have the potential to prevent collisions and reduce regular and incident delays by creating a smoother traffic flow**
- **Benefits depend on market penetration—50% penetration could reduce congestion delays 50% and yields annual benefits to travelers of some \$200 billion**
- **Benefits to the broader economy could be even larger**

Counterfactual Analysis for California

Scenario: Autonomous vehicles reduce congestion
50%

$$\text{Recall, } \text{Log}(G) = \beta * \log(C) + X\delta + \varepsilon$$

Given the scenario, the post growth rate is:

$\text{Log}(G_{\text{post}}) = \beta * \log(C \cdot (1 - \alpha)) + X\delta + \varepsilon$, where α is the percentage reduction in congestion.

Thus, we can express the post-scenario growth rate as:

$$G_{\text{post}} = G \cdot \exp(\beta * \log(1 - \alpha))$$

Scenario Results

Jobs	Increase in Annual Growth	+ jobs 2011
	1.7%	251,624
GDP	Increase in Annual Growth	+ GDP 2011
	1.8%	\$36.6 billion
Wages	Increase in Annual Growth	+ Wages 2011
	1.24%	\$10.5 billion
Freight	Increase in Annual Growth	+ Freight 2008
Flows	7.6%	\$57 billion
National Multiplier: 7.6 based on BEA		
2010 GDP comparison		

Summary

- A nation's transportation system is a large and vital part of its economy
- Transport affects many sectors besides the users and suppliers of transportation
- Transportation infrastructure has been compromised by inefficiencies, especially due to congestion
- Status quo bias indicates it is unlikely that congestion will be reduced efficiently by policy reforms

Summary continued

- Historically, private modes have led infrastructure through technological advance
- Autonomous vehicles have the potential to greatly improve infrastructure efficiency, which would generate large benefits to travelers and non-transport sectors of the economy
- Government's role is to expedite—not impede—implementation of this technology